Target validation and structure–activity analysis of a series of novel PCNA inhibitors
نویسندگان
چکیده
Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication and repair. Tumor cells express high levels of PCNA, identifying it as a potentially ideal target for cancer therapy. Previously, we identified nine compounds termed PCNA inhibitors (PCNA-Is) that bind directly to PCNA, stabilize PCNA trimer structure, reduce chromatin-associated PCNA, and selectively inhibit tumor cell growth. Of these compounds, PCNA-I1 was most potent. The purpose of this study is to further establish targeting of PCNA by PCNA-I1 and to identify PCNA-I1 analogs with superior potencies. We found that PCNA-I1 does not affect the level of chromatin-associated PCNA harboring point mutations at the predicted binding site of PCNA-I1. Forty-six PCNA-I1 analogs with structures of 1-hydrazonomethyl-2-hydroxy (scaffold A), 2-hydrazonomethyl-1-hydroxy (scaffold B), 2-hydrazonomethyl-3-hydroxy (scaffold C), and 4-pyridyl hydrazine (scaffold D) were analyzed for their effects on cell growth in four tumor cell lines and PCNA trimer stabilization. Compounds in scaffold group A and group B showed the highest trimer stabilization and the most potent cell growth inhibitory activities with a significant potency advantage observed in the Z isomers of scaffold A. The absence of trimer stabilization and growth inhibitory effects in compounds of scaffold group D confirms the essentiality of the hydroxynaphthyl substructure. Compounds structure-activity relationship (SAR)-6 and SAR-24 were analyzed for their effects on and found to reduce chromatin-associated PCNA in tumor cells. This study led to the identification of SAR-24, a compound with superior potencies and potentially improved solubility, which will be used for future development of PCNA-targeting cancer therapies.
منابع مشابه
Progress in HIV-1 integrase inhibitors: A review of their chemical structure diversity
HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...
متن کاملProgress in HIV-1 integrase inhibitors: A review of their chemical structure diversity
HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...
متن کاملFragment-Based Hologram QSAR Studies on a Series of 2,4-Dioxopyrimidine-1-Carboxamides As Highly Potent Inhibitors of Acid Ceramidase
A series of structurally related 2,4-dioxopyrimidine-1-carboxamide derivatives as highly potent inhibitors against acid ceramidase were subjected to hologram quantitative structure-activity relationship (HQSAR) analysis. A training set containing 24 compounds served to establish the HQSAR model. The best HQSAR model was generated using atoms, bond, connectivity, donor and acceptor as fragment d...
متن کاملFragment-Based Hologram QSAR Studies on a Series of 2,4-Dioxopyrimidine-1-Carboxamides As Highly Potent Inhibitors of Acid Ceramidase
A series of structurally related 2,4-dioxopyrimidine-1-carboxamide derivatives as highly potent inhibitors against acid ceramidase were subjected to hologram quantitative structure-activity relationship (HQSAR) analysis. A training set containing 24 compounds served to establish the HQSAR model. The best HQSAR model was generated using atoms, bond, connectivity, donor and acceptor as fragment d...
متن کاملQSAR Analysis for Some 1, 2-Benzisothiazol-3-one Derivatives as Caspase-3 Inhibitors by Stepwise MLR Method
Caspase-3, one of the dominant effectors caspases, is activated in almost every model of apoptosis with various signaling pathways. Hence, inhibition of caspase-3 has become an attractive target in the treatment of neurodegenerative diseases. Caspase-3 inhibitory activities of some 1,2-benzisothiazol-3-one derivatives were modeled by quantitative structure–activity relationship (QSAR) using ste...
متن کامل